冰河新型载冷剂关于相变材料的应用可以更好的利用峰谷电给用户带来更好的经济价值。

相变材料可分为有机(Organic)和无机(Inorganic)相变材料。亦可分为水合盐(HydratedSalts)相变材料和蜡质(ParaffinWax)相变材料。

我们常见的相变材料非水莫属了,当温度低至0°C时,水由液态变为固态(结冰)。当温度高于0°C时水由固态变为液态(溶解)。在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。冰的数量(体积)越大,溶解过程需要的时间越长。这是相变材料的一个典型的例子。相变材料实际上可作为能量存储器。这种特性在节能,温度控制等领域有着极大的意义。因此,相变材料及其应用成为广泛的研究课题。有机相变材料和无机相变材料的大区别在于运用到建筑材料等方面耐久性和防火性的差异。冰河冷媒一直再研究具有超低温共晶点的相变材料。

相变材料具有在一定温度范围内改变其物理状态的能力。以固-液相变为例,在加热到熔化温度时,就产生从固态到液态的相变,熔化的过程中,相变材料吸收并储存大量的潜热;当相变材料冷却时,储存的热量在一定的温度范围内要散发到环境中去,进行从液态到固态的逆相变。在这两种相变过程中,所储存或释放的能量称为相变潜热。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变,形成一个宽的温度平台,虽然温度不变,但吸收或释放的潜热却相当大。

相变材料的分类相变材料主要包括无机PCM、有机PCM和复合PCM三类。其中,无机类PCM主要有结晶水合盐类、熔融盐类、金属或合金类等;有机类PCM主要包括石蜡、醋酸和其他有机物;复合相变储热材料的应运而生,它既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。目前冰河冷媒已经有高相变潜热的材料再实验阶段,针对实际应用中的各种工况,温度区间宽泛,性能稳定。

冰河冷媒载冷剂为各种相变蓄能工艺提供解决方案。